Технические статьи

ГлавнаяТехнические статьиТПАКлассификация → Типы трубопроводной арматуры и её конструктивные разновидности. Задвижки, вентили, клапаны, краны, заслонки, регуляторы и их отличия.

Типы трубопроводной арматуры и её конструктивные разновидности. Задвижки, вентили, клапаны, краны, заслонки, регуляторы и их отличия.

Кран шаровый DN 30 PN 16 с присоединительными фланцами

Кран шаровый DN 30 PN 16 с присоединительными фланцами

Трубопроводная арматура настолько разнообразна, что даже краткое описание основных её типов только по конструкции затвора занимает достаточно большой объём. Выполнение одних и тех же функций может осуществляться различными типами арматуры, обладающими различными принципами конструкции затвора.

Дата публикации: 24 мая 2011

Автор: Дроздов М.В., ООО «Инженерный Союз»

Разместите статью о трубопроводах в данном каталоге
Разместите статью о трубопроводах в данном каталоге Ваша информация на каталоге технических статей

Сравнение трубопроводной арматуры различных типов

Сравним трубопроводную арматуру различных конструкций. В таблице 1 приведено краткое описание основных отличительных характеристик трубопроводных устройств.

Примеры отличий в характеристиках модернизированной арматуры

Характеристику арматурных устройств отличающихся типов нужно приводить с осторожностью, ведь недостатки базовой конструкции отдельного типа могут быть ослаблены или устранены при её модернизации. Ниже приведены три примера модернизации арматурных устройств.

Задвижка полнопроходная с обрезиненным клином фланцевая с ручным приводом

Рисунок 1. Задвижка
полнопроходная с
обрезиненным клином
фланцевая с
ручным приводом

 

Задвижки суженного Ду и полнопроходные задвижки

Например, задвижки суженного Ду обладают значительно меньшей строительной высотой по сравнению с полнопроходными, но у них больше строительная длина и гидравлическое сопротивление.

Шаровой кран и кран с конусной пробкой

Шаровой кран имеет меньший износ поверхностей и усилие на привод, более герметичен, но сложнее и дороже по себестоимости, чем кран с конусной пробкой.

Вентиль базовой конструкции и прямоточный вентиль с косым шпинделем

Прямоточный вентиль, имеющий в своей конструкции косым шпинделем имеет меньшее гидравлическое сопротивление, чем обычный. 

Конденсатоотводчики и регуляторы имеют конструкцию, где используется один их названных выше базовых типов арматуры (чаще всего клапан). По этой причине их не выделяют по конструкции затвора в самостоятельный тип арматуры. Но их можно выделить в отдельный тип при классификации по назначению, так как они активно применяются в теплогазосноабжении и вентиляции.

Классификация арматуры по типу затвора

Таблица 1.

Классификация трубопроводной арматуры по типу конструкции затвора
Название Схема Способ движения затвора Преимущества Недостатки
Задвижки Задвижка. Схема конструкции затвора задвижка. Возвратно-поступательно вдоль уплотнительной поверхности. Малое гидравлическое сопротивление. Отсутствие противодавления рабочей среды. Большая строительная высота, малая строительная длина. Медленное
срабатывание. Большое усилие на привод затвора.
Сильный износ поверхности седла на загрязненных
жидкостях
Клапан Клапан. Схема конструкции затвора клапана. перпендикулярно к уплотнительной поверхности Малая строительная высота. Быстрое срабатывание. Высокая герметичность. Большая строительная длина. Большое усилие на привод затвора. Большое гидравлическое сопротивление. Наличие противодавления рабочей среды.
Кран Кран. Схема конструкции затвора крана. вращательно на 90° вдоль уплотнительной поверхности Малая строительная высота, малая строительная длина. Быстрое срабатывание.  Малое гидравлическое сопротивление. Отсутствие противодавления рабочей среды. Большое усилие на привод затвора. Сильный износ поверхности седла и пробки на загрязненных и агрессивных жидкостях.
Заслонка Заслонка. Схема конструкции затвора заслонки. вращательно на 90° Малая строительная высота, малая строительная длина. Быстрое срабатывание. Малое гидравлическое сопротивление. Малое усилие на привод затвора. Отсутствие противодавления рабочей среды. Применяется на газах. Малая герметичность.
Клапан диафрагмовый (мембранный) Клапан диафрагмовый (клапан мембранный). Схема конструкции затвора клапана диафрагменного. возвратно-поступательно перпендикулярно к уплотнительной поверхности Малая строительная высота. Быстрое срабатывание. Малое усилие на привод затвора. Применяется на агрессивных жидкостях. Большая строительная длина. Большое гидравлическое сопротивление. Наличие противодавления рабочей среды.
Клапан шланговый Клапан шланговый. Схема конструкции затвора шлангового клапана. возвратно-поступательно перпендикулярно к уплотнительной поверхности Малая строительная высота. Быстрое срабатывание. Малое усилие на привод затвора. Применяется на агрессивных жидкостях. Малое гидравлическое сопротивление. Большая строительная длина. Наличие противодавления рабочей среды. 

Выполнение одних и тех же функций осуществляется различными типами арматуры, основой которых являются задвижки, краны, клапаны, заслонки.

Типы трубопроводной арматуры

Рассмотрим отдельно типы арматуры.

Задвижки

Задвижка (англ. gate valve) — арматурное устройство, имеющее затвором в виде листа, диска или клина, перемещающихся вдоль уплотнительных колец седла корпуса перпендикулярно оси потока среды. Задвижки могут быть проходными и суженными, в которых отверстия уплотнительных колец меньше Ду трубопровода.

По геометрии затвора задвижки различаются клиновые и параллельные задвижки.

Клиновая задвижка

Клиновая задвижка оснащена клиновым затвором с уплотнительными поверхностями, расположенными под углом друг к другу. Клин затвора может быть цельным жестким, цельным упругим или составным двухдисковым.

Параллельная задвижка

Параллельная задвижка оснащена затвором, уплотнительные поверхности которого параллельны друг другу. Задвижка параллельная может быть шиберной (однодисковой) или двухдисковой.

Шпиндели задвижек

Задвижки могут иметь выдвижной шпиндель (шток) и невыдвижной (вращаемый шпиндель). Они разнятся конструкцией винтовой пары, посредством которой перемещается затвор. Строительный размер меньше у задвижек с вращаемым шпинделем.

Преимущества задвижек

Преимуществом задвижек является отсутствие преодоления давления среды при перемещении рабочего органа. Это даёт возможность  усилие, необходимое для перемещения затвора.

Ещё одно преимущество — прямоточность потока транспортируемой среды и, как следствие, малый коэффициент сопротивления в открытом состоянии.

Симметричность конструкции задвижек позволяет применять их при различных направлениях движения транспортируемой среды. Это позволяет избежать лишних сборок и разборок соединений фланцев в случае необходимости изменения направления движения внутренней среды.

Недостатки задвижек

При перемещении рабочего органа задвижки возникает сильное трение. Задвижки имеют большую строительную высоту вследствие необходимости выдвижения штока (минимум 2 Ду трубопровода).

Когда затвор находится в промежуточном положении, тарелки частично перекрывают сечение седла, нижние области уплотнительных кольцевых поверхностей активного обтекаются потоком и подвергаются абразивному износу твердыми включениями рабочей среды. По этой причине после эксплуатации в режиме частичного закрытия задвижки не обеспечивают достаточной герметичности при закрытии. Этот недостаток, присущий также многим видам арматуры, ограничивает использование задвижки как регулирующего элемента. Более того, регулирующие характеристики задвижек неудовлетворительны, задвижка — запорная трубопроводная арматура.

Применение задвижек

Задвижки эксплуатируются на трубопроводах с Ду > 50 мм, где требуется плавное перекрытие сечения с целью предотвращения  гидравлического удара.

В системах вентиляции и кондиционирования воздуха (а также, например, в печном отоплении) аналогом задвижки является вентиляционный шибер — металлический лист прямоугольной формы, перемещающийся в направляющих перпендикулярно оси воздуховода.

Клапаны

Клапаны (англ. globe valve) — детали арматуры с затвором в виде  плоской или конусной тарелки, двигающимся возвратно-поступательно вдоль центральной оси уплотнительной поверхности седла корпуса. В некоторых конструкциях клапанов затвор движется по дуговой траектории.

Клапан межфланцевый обратный. При монтаже располагается между фланцами.

Рисунок 2. Межфланцевый
дисковый обратный
клапан
(при монтаже
располагается
между фланцами).

Клапаны — наиболее распространенный вид трубопроводной арматуры. Они играют основную роль в конструкциях входят в конструкцию множества регуляторов.

Клапаны имеют множество разновидностей по типу действия:

  • предохранительные,
  • запорные,
  • регулирующие,
  • переливные,
  • редукционные,
  • клапаны разности давлений,
  • клапаны соотношения давлений,
  • клапана последовательности,
  • клапана выдержки времени
  • и другие.

Затворы клапанов

Клапаны называются тарельчатыми, если их затвор имеет вид тарелки, или игольчатыми — конусной иглы.

Седло клапана

Клапаны могут быть односедельными и двухседельными. В конструкции двухседельных клапанов имеется пара сёдел, перекрываемых, соответственно, парой тарелок.

Клапаны с упругими деформируемыми затворами

Клапанами также называется трубопроводная арматура с упругими деформируемыми затворами: мембранные и шланговые клапаны. Такие конструкции позволяют обойтись без подвижных сальниковых уплотнений, по которым рабочая среда может перетекать наружу.

Мембранные клапаны

Затвор в мембранном клапанеупругая гибкая мембрана, прогибающаяся под действием приложенного усилия перпендикулярно оси движения потока. Седлом является край перегородки, стоящей поперёк канала. При прогибе мембрана плотно примыкает к краю перегородки и перекрывает свободное сечение для прохода потока.

Шланговые клапаны

В шланговом клапане канал для протока рабочей жидкости представляет из себя упругий деформируемый шланг, пережимающийся при закрытии клапана.

Вентили

Вентиль — клапан, затвор которого перемещается с помощью резьбовой пары.

Вентиль сильфонный с соединителными фланцами

Рисунок 3. Вентиль сильфонный
с соединительными фланцами

Вентили изготавливают как в муфтовом (резьбовом) исполнении, так и для соединения с фланцами труб.

Преимущества вентилей

Основное преимущество вентилей — отсутствие трения уплотнительных поверхностей в момент закрытия, так как затвор движется перпендикулярно, что уменьшает опасность повреждения (задиров). Высота вентилей меньше, чем у задвижек, ввиду того что ход шпинделя невелик и обычно составляет не более четверти диаметра трубопровода. Однако строительная длина вентилей больше, чем у задвижек, так как требуется развернуть поток внутри корпуса.

Недостатки клапанов

Недостатком  клапанов является большое гидравлическое сопротивление, вследствие того что

  1. направление потока рабочей среды изменяется внутри корпуса устройства дважды
  2. мало проходное сечение седла.

Вентили эксплуатируются только при определенном направлении движения рабочей среды: поток должен подтекать под тарелку и в закрытом положении давить на тарелку со стороны седла. При открывании вентиля давление способствует отрыву тарелки от седла. Если же вентиль будет ориентирован в противоположном направлении, то в закрытом состоянии давление будет придавливать тарелку к седлу и создавать значительные трудности при открытии. Это может повлечь срыв тарелки со штока и вентиль выйдет из строя.

Заслонки

Заслонка дроссельная фланцевая.

Рисунок 4. Заслонка
дроссельная фланцевая.

Заслонки (англ. butterfly valve) — устройства арматуры с затвором в виде диска или прямоугольника, поворачивающимся на оси, расположенной перпендикулярно проходу. Затвор заслонки движется по дуге.

Применение заслонок

 

Заслонки наиболее часто используются на трубопроводах больших диаметров, малых давлениях среды и пониженных требованиях к герметичности запорного органа.

Заслонки применяют в вентиляции и кондиционировании воздуха на воздуховодах, а так же на различных газоходах, то есть там, где имеют место большие диаметры трубопроводов, небольшие давления и невысокие требования к герметичности.

По количеству  установленных пластин различаются заслонки одинарные и многостворчатые. На капельных жидкостях заслонки применяют редко, так как их конструкция не обеспечивает надежной герметичности перекрытия прохода. На газах дроссельные заслонки (throttle) ввиду простоты конструкции и надежности применяют очень часто для регулирования и отключения расхода.

Конденсатоотводчики

Предназначены конденсатоотводчики (англ. steam trap) для вывода из газовой системы конденсата, не участвующего в  рабочем или технологическом процессе. Конденсат сливается постоянно или периодически по мере его накопления в системе.

Конденсатоотводчики должны выпускать жидкость и задерживать газообразную фазу вещества, что осуществляется за счёт наличия гидравлического или механического затвора. Затвор должен надёжно выпускать конденсат при различных давлениях газа, температур конденсата и скорости его поступления в конденсатоотводчик.

Клапанные и бесклапанные конденсатоотводчики

Конденсатоотводчики могут быть клапанными и бесклапанными. Бесклапанные конденсатоотводчики выпускают конденсат непрерывно, а бесклапанные — периодически при наступлении заданных условий.

Клапанные конденсатоотводчики являются двухпозиционными регуляторами, в которых роль чувствительного элемента и привода одновременно выполняет поплавок, термостат, биметаллическая пластина или диск.

Конденсатоотводчики в зависимости от принципа действия бывают:

  • закрытого типа,
  • открытого типа,
  • термодинамические,
  • термостатические,
  • сопловые,
  • лабиринтные.

Конденсатоотводчики поплавковые в зависимости от конструкции поплавка различают с открытым поплавком и с закрытым поплавком, а также с опрокинутым поплавком колокольного типа.

В поплавковых конденсатоотводчиках проходное сечение клапана для выпуска конденсата открывается при всплытии поплавка, с которым связан затвор клапана. Всплытие поплавка происходит в тот момент, когда уровень конденсата в корпусе конденсатоотводчика достигнет предельного значения. После открывания выпускного клапана часть конденсата выдавливается в конденсатную линию и поплавок снова опускается, перекрывая отверстие седла клапана.

Принцип работы поплавкового конденсатоотводчика таков же, как и принцип работы регулятора уровня (регулятора перелива).

Термостатные конденсатоотводчики

В  конденсатоотводчиках термостатических или термостатных для управления затвором клапана используется термосильфон, расширяющийся при повышении температуры, биметаллическая пластина или диск. Работа таких конденсатоотводчиков основана на разнице температур паровой и жидкой фазы.

В термостатных сильфонного типа конденсатоотводчиках сильфон (тонкостенная гофрированная трубка) заполнен жидкостью, испаряющейся при температуре свежего пара, но находящейся в жидкой фазе при температуре конденсата. Так, например, при удалении конденсата с температурой 85…90°С используется смесь из 25% этилового спирта и 75 % пропилового спирта. Как только сильфон начинает омываться паром, жидкость испаряется, сильфон расширяется и перемещает клапан, закрывая отверстие для выпуска конденсата. В других конструкциях для этой цели применяют биметаллические пластины.

Термодинамические конденсатоотводчики

Конденсатоотводчик с соединительными фланцами.

Рисунок 5. Конденсатоотводчик
термодинамический
с соединительными
плоскими фланцами.

Конденсатоотводчики термодинамические имеют непрерывное действие. Они широко распространены вследствие простоты конструкции, малым габаритам, надежности в работе, низкой стоимости, высокой пропускной способности и малым потерям пара.

Тарельчатый конденсатоотводчик

Тарельчатый конденсатоотводчик имеет лишь одну подвижную деталь — тарелку, свободно лежащую на седле. Проходящий конденсат приподнимает тарелку и выходит через отводной канал. При поступлении пара тарелка прижимается к седлу в связи с тем, что высокие скорости истечения пара создают под ней зону пониженного давления.

Лабиринтные конденсатоотводчики

Конденсатоотводчики лабиринтные также имеют непрерывное действие. Они содержат устройство в виде лабиринта, которое создает большое гидравлическое сопротивление газу, а конденсату — значительно меньшее. Вследствие этого конденсат проходит через конденсатоотводчик, а пар задерживается.

Сопловые конденсатоотводчики

Конденсатоотводчики  сопловые также действуют непрерывно. Они содержат устройство в виде ступенчатого сопла, которое также обладает значительным различием в сопротивлении для конденсата и газообразной фазы.

Недостатки конденсатоотводчиков

Конденсатоотводчики — малонадежные устройства, нуждающиеся в частой ревизии.

Краны

Кран (англ. tap valve) — трубопроводное устройство с затвором в форме тела вращения, поворачивающимся вокруг своей оси на 90° по отношению к оси движения потока рабочей среды.

Задвижка нержавеющая с соединительными фланцами.

Рисунок 6. Кран шаровый
нержавеющий
с соединительными фланцами.

Затвор крана иногда называют пробкой. Пробка крана имеет отверстие, перпендикулярное оси тела вращения, предназначенное для прохода среды. Если кран открыт, отверстие пробки располагается соосно оси движения среды, если кран закрыт, отверстие пробки перпендикулярно потоку.

В отличие от вентиля и задвижки, для того, чтобы открыть или закрыть кран, требуется совершить не несколько оборотов шпинделя, а всего один поворот пробки  на 90º. Следовательно, краны, как правило, снабжают не маховиком, а рукояткой.

В зависимости от числа рабочих положений пробки кранов бывают двухходовыми или трехходовыми.Принципиально могут быть краны и на большее число положений, однако они нашли применение только в лабораторной арматуре. В зависимости от формы отверстий на пробке краны могут выполнять различные функции

В зависимости от формы тела вращения, образующего затвор, краны бывают:

  • цилиндрическими,
  • конусными,
  • шаровыми.

Для герметичности затвор должен быть смазан, чтобы смазка заполнила микрозазоры между поверхностью пробки и корпуса, и уменьшала усилия, требуемые на поворот пробки.

Пробка должна быть постоянно прижата к поверхности корпуса. В зависимости от способа прижатия пробки различают сальниковые и натяжные краны.

В сальниковых кранах между крышкой крана и верхним торцом пробки расположена упругая сальниковая набивка, создающая постоянное усилие, прижимающее пробку к корпусу.

В натяжных кранах снизу пробки расположен стержень с резьбой, проходящий через отверстие в корпусе. Прижатие пробки осуществляется посредством пружины, надеваемой на винт и стянутой гайкой. Натяжные краны более надежны, так как в них работа крана не зависит от свойств сальниковой набивки, которая со временем теряет свои упругие свойства. Поэтому натяжные краны используют в газоснабжении.

Конусные краны

Преимуществом конусных кранов является невысокая стоимость, малое гидравлическое сопротивление, простота конструкции и ревизии.

Недостатком таких кранов является большое усилие, требуемое на поворот пробки. По истечении некоторого срока работы (в зависимости от качества воды в системе) микрозазоры между поверхностью корпуса и пробки зарастают отложениями - пробка «прикипает». В этик условиях на поворот пробки требуется настолько большое усилие, что возможно поломка крана.

Регуляторы давления, расхода и уровня

Регулятор давления с присоединительными фланцами

Рисунок 7. Регулятор давления
с присоединительными фланцами

Назначение регуляторов

Регуляторы (редукторы) давления, расхода и уровня предназначены для автоматического поддержания соответствующего параметра без использования вторичных источников энергии.

Конструкция регуляторов

Регулятор по конструкции представляет из себя клапан с пневмо- или гидроприводом мембранного, сильфонного или плунжерного типа, а так же специальную установочную пружину, предназначенную для подстройки регулятора на требуемое значение параметра. Конструкции регуляторов необычайно разнообразны.  

Подразделяются регуляторы уровня на:

  • регуляторы питания, в которых уровень поддерживается за счет периодического добавлением жидкости в сосуд, и
  • регуляторы перелива, в которых происходит слив избытка жидкости.

Регулятор давления

Рассмотрим регулятор давления на примере редуктора газового баллона. Отверстие входного патрубка для подачи газа является седлом клапана, к которому прижимается тарелка клапана, закрепленная на одном конце углового рычага. Второй конец рычага соединен с подвижной мембраной, на которую с внешней стороны действует сила атмосферного давления и сила сжатия установочной пружины, а с другой стороны — сила давления газа в полости регулятора. Ось вращения рычага закреплена на днище корпуса регулятора. Если давление одна из горелок газовой плиты будет закрыта, то уменьшится расход газа, в результате чего давление газа в полости редуктора начнет повышаться. Это приведет к перемещению мембраны, которая потянет за собой конец рычага, соединенный с нею. Второй конец рычага с закрепленным на нем клапанам так же переместится  и прикроет отверстие для прохода газа. В результате этого давление газа в полости редуктора будет практически на постоянном уровне, так как ход клапана крайне мал и усилие установочной пружины при перемещении мембраны изменится незначительно.

Регулятор будет обеспечивать пропуск требуемого расхода газа при постоянном значении давления перед горелками.

Регулятор расхода

Регулятор расхода прямого действия.

Рисунок 7. Регулятор
расхода
прямого действия
с соединительными
фланцами.

Работает  регулятор расхода аналогично регулятору уровня, поддерживая постоянный перепад давления на некотором дросселирующем устройстве, например, диафрагме или регулируемом сопле. Так как коэффициент местного сопротивления дросселирующего устройства не изменяется, постоянный перепад давления означает, что скорость потока через дроссель постоянна и, следовательно, постоянен расход. Некоторые регуляторы имеют дроссель, конструкция которого позволяет регулировать его сопротивление, подстраивая регулятор на требуемое значение расхода. Чаще, однако, сопротивление дросселирующего устройства оставляют постоянным, а изменяют сжатие установочной пружины, что позволяет регулировать перепад давления на дросселе и, следовательно, расход через регулятор.  

В регуляторах важным принципом является разгрузка клапана от одностороннего давления рабочей среды, что позволяет значительно уменьшить усилия, требуемые на перемещение рабочего органа. Наиболее совершенным видом разгрузки является двухседельная конструкция клапана, когда усилия, действующие на две тарелки, противоположны по направлению и взаимно компенсируются. Однако в такой конструкции корпус сложнее изготовить корпус и тяжелее обеспечить полную герметичность закрытия двух клапанов одновременно. Несмотря на такие трудности, эта конструкция очень широко применяется в современных регуляторах.

Заключение

Важное значение в надежности функционирования трубопровода имеет не только арматура, но и соединительные детали трубопроводов, например, ответные фланцы для арматуры.

Выполнение одних и тех же функций может осуществляться различными типами арматуры, обладающими различными принципами конструкции затвора. Основные типы трубопроводной арматуры по принципу затвора  — задвижки, клапаны, заслонки, краны, мембранные клапаны, шланговые клапаны, регуляторы давления, расхода и уровня, конденсатоотводчики — были кратко освещены в этой статье.

Список литературы

  1. Промышленная трубопроводная арматура : Каталог, ч. I / Сост. Иванова О. Н., Устинова Е. И., Свердлов А. И. – М. : ЦИНТИхимнефтемаш, 1979. – 190 c.
  2. Промышленная трубопроводная арматура : Каталог, ч. II / Сост. Иванова О. Н., Устинова Е. И., Свердлов А. И. – М. : ЦИНТИхимнефтемаш, 1977. – 120 c.
  3. Арматура энергетическая : Каталог-справочник / Сост. Матвеев А. В., Закалин Ю. Н., Беляев В. Г., Филатов И. Г... – М. : НИИЭинформэнергомаш, 1978. – 172 c.

Получив доступ к данной странице, Вы автоматически принимаете Пользовательское соглашение.

Рейтинг@Mail.ru
Rambler's Top100